l301.basis

Implementation level
Type Status
CML extraction template image0
HTML5 representation image1
Template attributes
Attribute Value
source Gaussian log
id l301.basis
name basis
repeat *
pattern \s*Standard basis.*
endPattern \s*NAtoms=.*
endPattern2 \s*Leave\sLink\s+301\s.*
endOffset 1
xml:base l301/l301.basis.xml

Input.

Standard basis: 6-31G(d) (6D, 7F)
There are     8 symmetry adapted basis functions of A   symmetry.
There are     5 symmetry adapted basis functions of B1  symmetry.
There are     5 symmetry adapted basis functions of B2  symmetry.
There are     5 symmetry adapted basis functions of B3  symmetry.
Integral buffers will be    262144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
   23 basis functions,    44 primitive gaussians,    23 cartesian basis functions
    5 alpha electrons        5 beta electrons
      nuclear repulsion energy        13.1577484238 Hartrees.
NAtoms=    5 NActive=    5 NUniq=    2 SFac= 5.66D+00 NAtFMM=   60 Big=F

Input.

Standard basis: 3-21G (6D, 7F)
Ernie: Thresh=  0.10000D-02 Tol=  0.10000D-05 Strict=F.
There are     7 symmetry adapted basis functions of AG  symmetry.
There are     0 symmetry adapted basis functions of B1G symmetry.
There are     2 symmetry adapted basis functions of B2G symmetry.
There are     4 symmetry adapted basis functions of B3G symmetry.
There are     0 symmetry adapted basis functions of AU  symmetry.
There are     7 symmetry adapted basis functions of B1U symmetry.
There are     4 symmetry adapted basis functions of B2U symmetry.
There are     2 symmetry adapted basis functions of B3U symmetry.
Integral buffers will be    131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
   26 basis functions,    42 primitive gaussians,    26 cartesian basis functions
    8 alpha electrons        8 beta electrons
      nuclear repulsion energy        33.7515964544 Hartrees.

IExCor=    0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX=  1.000000
ScaDFX=  1.000000  1.000000  1.000000  1.000000 ScalE2=  1.000000  1.000000
IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0
NAtoms=    6 NActive=    6 NUniq=    2 SFac= 4.00D+00 NAtFMM=   50 NAOKFM=F Big=F

Output text.

<comment class="example.output" id="l301.basis">
    <module cmlx:templateRef="l301.basis">
      <scalar dataType="xsd:string" dictRef="cc:basis">6-31G(d)</scalar>
      <scalar dataType="xsd:string" dictRef="cc:diffuse">(6D, 7F)</scalar>
      <list cmlx:lineCount="4" cmlx:templateRef="symmadapt">
        <array dataType="xsd:integer" dictRef="cc:adapted" size="4">8 5 5 5</array>
        <array dataType="xsd:string" dictRef="cc:symm" size="4">A B1 B2 B3</array>
      </list>
      <scalar dataType="xsd:integer" dictRef="g:buffer">262144</scalar>
      <scalar dataType="xsd:string" dictRef="g:integralformat">Raffenetti 2</scalar>
      <scalar dataType="xsd:string" dictRef="g:twoe">Two-electron</scalar>
      <scalar dataType="xsd:string" dictRef="g:twoestatus">on</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:basiscount">23</scalar>
      <scalar dataType="xsd:integer" dictRef="g:primbasis">44</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:cartesianbasis">23</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:alphae">5</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:betae">5</scalar>
      <scalar dataType="xsd:double" dictRef="cc:nucrepener">13.1577484238</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:natoms">5</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:nactiveatoms">5</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:uniqatoms">2</scalar>
      <scalar dataType="xsd:double" dictRef="g:sfac">5.66</scalar>
      <scalar dataType="xsd:integer" dictRef="g:natfmm">60</scalar>
      <scalar dataType="xsd:string" dictRef="g:big">F</scalar>
    </module>
  </comment>

Output text.

<comment class="example.output" id="l301.basis.09">
    <module cmlx:templateRef="l301.basis">
      <scalar dataType="xsd:string" dictRef="cc:basis">3-21G</scalar>
      <scalar dataType="xsd:string" dictRef="cc:diffuse">(6D, 7F)</scalar>
      <module cmlx:templateRef="ernie">
        <scalar dataType="xsd:double" dictRef="g:thresh">0.10000e-02</scalar>
        <scalar dataType="xsd:double" dictRef="g:tol">0.10000e-05</scalar>
        <scalar dataType="xsd:string" dictRef="g:strict">F</scalar>
      </module>
      <list cmlx:templateRef="symmadapt">
        <array dataType="xsd:integer" dictRef="cc:adapted" size="8">7 0 2 4 0 7 4 2</array>
        <array dataType="xsd:string" dictRef="cc:symm" size="8">AG B1G B2G B3G AU B1U B2U B3U</array>
      </list>
      <scalar dataType="xsd:integer" dictRef="g:buffer">131072</scalar>
      <scalar dataType="xsd:string" dictRef="g:integralformat">Raffenetti 1</scalar>
      <scalar dataType="xsd:string" dictRef="g:twoe">Two-electron</scalar>
      <scalar dataType="xsd:string" dictRef="g:twoestatus">on</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:basiscount">26</scalar>
      <scalar dataType="xsd:integer" dictRef="g:primbasis">42</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:cartesianbasis">26</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:alphae">8</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:betae">8</scalar>
      <scalar dataType="xsd:double" dictRef="cc:nucrepener">33.7515964544</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:natoms">6</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:nactiveatoms">6</scalar>
      <scalar dataType="xsd:integer" dictRef="cc:uniqatoms">2</scalar>
      <scalar dataType="xsd:double" dictRef="g:sfac">4.00e+00</scalar>
      <scalar dataType="xsd:integer" dictRef="g:natfmm">50</scalar>
      <scalar dataType="xsd:string" dictRef="g:big">F</scalar>
      <scalar dataType="xsd:string" dictRef="g:misc">IExCor=    0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX=  1.000000</scalar>
      <scalar dataType="xsd:string" dictRef="g:misc">ScaDFX=  1.000000  1.000000  1.000000  1.000000 ScalE2=  1.000000  1.000000</scalar>
      <scalar dataType="xsd:string" dictRef="g:misc">IRadAn=      0 IRanWt=     -1 IRanGd=            0 ICorTp=0</scalar>
    </module>
  </comment>

Template definition.

<record id="basis">\s*Standard basis:{A,cc:basis}{X,cc:diffuse}</record>
<templateList id="ernie">  <template pattern="\s*Ernie.*" endPattern=".*" endOffset="0" id="ernie">    <record id="ernie" repeat="*">\s*Ernie: Thresh={E,g:thresh}\s*Tol={E,g:tol}\s*Strict={A,g:strict}\.\s*</record>    <transform process="pullup" xpath=".//cml:scalar" repeat="2" />
    </template>
  </templateList>
<templateList>  <template pattern="\s*There\sare.*" endPattern="\s*nuclear\srepulsion.*" id="symaddnuc" endOffset="1">    <record id="symmadaptcart" repeat="*" makeArray="true">\s* There are{I,cc:adapted} symmetry adapted cartesian basis functions of{A,cc:symm}symmetry\.\s*</record>    <record id="symmadapt" repeat="*" makeArray="true">\s*There are{I,cc:adapted} symmetry adapted basis functions of{A,cc:symm}symmetry\.\s*</record>    <templateList>      <template pattern="\s*Integral\sbuffers.*" endPattern=".*" endPattern2="~" endOffset="0">        <record id="buffer">\s*Integral buffers will be {I,g:buffer}\s*words long\.\s*</record>        <transform process="pullup" xpath=".//cml:scalar" repeat="2" />
        </template>      <template pattern=".*integral\sformat.*" endPattern=".*" endPattern2="~" endOffset="0">        <record id="raff">\s*{X,g:integralformat}\sintegral format\.\s*</record>        <transform process="pullup" xpath=".//cml:scalar" repeat="2" />
        </template>      <template pattern=".*integral\ssymmetry.*" endPattern=".*" endPattern2="~" endOffset="0">        <record id="twoe">\s*{X,g:twoe} integral symmetry is turned {X,g:twoestatus}\.\s*</record>        <transform process="pullup" xpath=".//cml:scalar" repeat="3" />
        </template>      <template pattern=".*basis\sfunctions\,.*" endPattern="\s*nuclear\srepulsion.*" endPattern2="~" endOffset="1">        <record id="basiscount">\s*{I,cc:basiscount}basis functions,{I,g:primbasis}primitive gaussians,{I,cc:cartesianbasis}cartesian basis functions\s*</record>        <record id="alphabeta">\s*{I,cc:alphae}alpha electrons\s*{I,cc:betae}beta electrons\s*</record>        <record id="nucrep">\s*nuclear repulsion energy\s*{F,cc:nucrepener}Hartrees\.\s*</record>        <transform process="pullup" xpath="./cml:list/cml:list/cml:scalar" repeat="3" />        <transform process="pullup" xpath="./cml:list/cml:scalar" repeat="2" />
        </template>
      </templateList>    <transform process="pullup" xpath=".//cml:list[@cmlx:templateRef='symmadaptcart']" />    <transform process="pullup" xpath=".//cml:list[@cmlx:templateRef='symmadapt']" />    <transform process="pullup" xpath="./cml:scalar" />

    </template>
  </templateList>
<templateList id="natoms">  <template pattern="\s*NAtoms=.*" repeat="*" endPattern=".*" endPattern2="~" id="natoms">    <record id="natoms" repeat="*">\s*NAtoms={I,cc:natoms}\sNActive={I,cc:nactiveatoms}\sNUniq={I,cc:uniqatoms}\sSFac={E,g:sfac}\sNAtFMM={I,g:natfmm}.*\sBig={A,g:big}\s*</record>    <transform process="pullup" xpath=".//cml:scalar" repeat="3" />
    </template>
  </templateList>
<templateList id="misc">  <template pattern="\s*((IExCor)|(ScaDFX)|(IRadAn)).*" repeat="*" endPattern=".*" endPattern2="~" id="misc">    <record id="misc">\s*{X,g:misc}\s*</record>    <transform process="pullup" xpath=".//cml:scalar" repeat="2" />
    </template>
  </templateList>
<transform process="pullup" xpath="./cml:list[@cmlx:templateRef='basis']/cml:list/cml:scalar" repeat="2" />
<transform process="delete" xpath=".//cml:list[count(*)=0]" />
<transform process="delete" xpath=".//cml:list[count(*)=0]" />
<transform process="delete" xpath=".//cml:module[count(*)=0]" />
<transform process="delete" xpath=".//cml:module[count(*)=0]" />