incar


Implementation level
Type Status
CML extraction template image0
HTML5 representation image1
Template attributes
Attribute Value
source VASP outcar
id incar
name INCAR parameters section
pattern \s* Dimensionsofsarrays:s*
endPattern \s*-{30,}s*
xml:base incar/incar.xml

Input.

 Dimension of arrays:
   k-points           NKPTS =      5   k-points in BZ     NKDIM =      5   number of bands    NBANDS=    192
   number of dos      NEDOS =    301   number of ions     NIONS =     49
   non local maximal  LDIM  =      8   non local SUM 2l+1 LMDIM =     32
   total plane-waves  NPLWV = 290304
   max r-space proj   IRMAX =   3928   max aug-charges    IRDMAX=  12951
   dimension x,y,z NGX =    48 NGY =   48 NGZ =  126
   dimension x,y,z NGXF=    96 NGYF=   96 NGZF=  252
   support grid    NGXF=    96 NGYF=   96 NGZF=  252
   ions per type =              12  24   3  10
 NGX,Y,Z   is equivalent  to a cutoff of  10.27, 10.27,  9.13 a.u.
 NGXF,Y,Z  is equivalent  to a cutoff of  20.53, 20.53, 18.27 a.u.


 I would recommend the setting:
   dimension x,y,z NGX =    43 NGY =   43 NGZ =  125
 SYSTEM =  IDM-4ring
 POSCAR =  CIF file

Startparameter for this run:
   NWRITE =      2    write-flag & timer
   PREC   = normal    normal or accurate (medium, high low for compatibility)
   ISTART =      1    job   : 0-new  1-cont  2-samecut
   ICHARG =      0    charge: 1-file 2-atom 10-const
   ISPIN  =      2    spin polarized calculation?
   LNONCOLLINEAR =      F non collinear calculations
   LSORBIT =      F    spin-orbit coupling
   INIWAV =      1    electr: 0-lowe 1-rand  2-diag
   LASPH  =      T    aspherical Exc in radial PAW
   METAGGA=      F    non-selfconsistent MetaGGA calc.

 Electronic Relaxation 1
   ENCUT  =  500.0 eV  36.75 Ry    6.06 a.u.  14.17 14.17 41.81*2*pi/ulx,y,z
   ENINI  =  500.0     initial cutoff
   ENAUG  =  644.9 eV  augmentation charge cutoff
   NELM   =    250;   NELMIN=  2; NELMDL=  0     # of ELM steps
   EDIFF  = 0.1E-04   stopping-criterion for ELM
   LREAL  =      T    real-space projection
   NLSPLINE    = F    spline interpolate recip. space projectors
   LCOMPAT=      F    compatible to vasp.4.4
   GGA_COMPAT  = T    GGA compatible to vasp.4.4-vasp.4.6
   LMAXPAW     = -100 max onsite density
   LMAXMIX     =    6 max onsite mixed and CHGCAR
   VOSKOWN=      0    Vosko Wilk Nusair interpolation
   ROPT   =   -0.00050  -0.00050  -0.00050  -0.00050
 Ionic relaxation
   EDIFFG = 0.1E-03   stopping-criterion for IOM
   NSW    =    600    number of steps for IOM
   NBLOCK =      1;   KBLOCK =    600    inner block; outer block
   IBRION =     44    ionic relax: 0-MD 1-quasi-New 2-CG
   NFREE  =      0    steps in history (QN), initial steepest desc. (CG)
   ISIF   =      2    stress and relaxation
   IWAVPR =     11    prediction:  0-non 1-charg 2-wave 3-comb
   ISYM   =      2    0-nonsym 1-usesym 2-fastsym
   LCORR  =      T    Harris-Foulkes like correction to forces

   POTIM  = 0.0500    time-step for ionic-motion
   TEIN   = ******    initial temperature
   TEBEG  =    0.0;   TEEND  =   0.0 temperature during run
   SMASS  =  -3.00    Nose mass-parameter (am)
   estimated Nose-frequenzy (Omega)   =  0.10E-29 period in steps =****** mass=  -0.138E-26a.u.
   SCALEE = 1.0000    scale energy and forces
   NPACO  =    256;   APACO  = 16.0  distance and # of slots for P.C.
   PSTRESS=    0.0 pullay stress

  Mass of Ions in am
   POMASS = 140.12 16.00 12.01  1.00
  Ionic Valenz
   ZVAL   =  12.00  6.00  4.00  1.00
  Atomic Wigner-Seitz radii
   RWIGS  =  -1.00 -1.00 -1.00 -1.00
  virtual crystal weights
   VCA    =   1.00  1.00  1.00  1.00
   NELECT =     310.0000    total number of electrons
   NUPDOWN=      -1.0000    fix difference up-down

 DOS related values:
   EMIN   =  10.00;   EMAX   =-10.00  energy-range for DOS
   EFERMI =   0.00
   ISMEAR =     0;   SIGMA  =   0.05  broadening in eV -4-tet -1-fermi 0-gaus

 Electronic relaxation 2 (details)
   IALGO  =     38    algorithm
   LDIAG  =      T    sub-space diagonalisation (order eigenvalues)
   LSUBROT=      T    optimize rotation matrix (better conditioning)
   TURBO    =      0    0=normal 1=particle mesh
   IRESTART =      0    0=no restart 2=restart with 2 vectors
   NREBOOT  =      0    no. of reboots
   NMIN     =      0    reboot dimension
   EREF     =   0.00    reference energy to select bands
   IMIX   =      4    mixing-type and parameters
     AMIX     =   0.20;   BMIX     =  0.00
     AMIX_MAG =   0.80;   BMIX_MAG =  0.00
     AMIN     =   0.10
     WC   =   100.;   INIMIX=   0;  MIXPRE=   1;  MAXMIX= -45

 Intra band minimization:
   WEIMIN = 0.0010     energy-eigenvalue tresh-hold
   EBREAK =  0.13E-07  absolut break condition
   DEPER  =   0.30     relativ break condition

   TIME   =   0.40     timestep for ELM

  volume/ion in A,a.u.               =      24.49       165.24
  Fermi-wavevector in a.u.,A,eV,Ry     =   1.042690  1.970399 14.792291  1.087203
  Thomas-Fermi vector in A             =   2.177366

 Write flags
   LWAVE  =      T    write WAVECAR
   LCHARG =      T    write CHGCAR
   LVTOT  =      F    write LOCPOT, total local potential
   LVHAR  =      F    write LOCPOT, Hartree potential only
   LELF   =      F    write electronic localiz. function (ELF)
   LORBIT =     11    0 simple, 1 ext, 2 COOP (PROOUT)


 Dipole corrections
   LMONO  =      F    monopole corrections only (constant potential shift)
   LDIPOL =      T    correct potential (dipole corrections)
   IDIPOL =      3    1-x, 2-y, 3-z, 4-all directions
   EPSILON=  1.0000000 bulk dielectric constant

 LDA+U is selected, type is set to LDAUTYPE =  2
   angular momentum for each species LDAUL =     3   -1   -1   -1
   U (eV)           for each species LDAUU =   5.5  0.0  0.0  0.0
   J (eV)           for each species LDAUJ =   1.0  0.0  0.0  0.0
 Exchange correlation treatment:
   GGA     =    PE    GGA type
   LEXCH   =     8    internal setting for exchange type
   VOSKOWN=      0    Vosko Wilk Nusair interpolation
   LHFCALC =     F    Hartree Fock is set to
   LHFONE  =     F    Hartree Fock one center treatment
   AEXX    =    0.0000 exact exchange contribution

 Linear response parameters
   LEPSILON=     F    determine dielectric tensor
   LRPA    =     F    only Hartree local field effects (RPA)
   LNABLA  =     F    use nabla operator in PAW spheres
   LVEL    =     F    velocity operator in full k-point grid
   LINTERFAST=   F  fast interpolation
   KINTER  =     0    interpolate to denser k-point grid
   CSHIFT  =0.1000    complex shift for real part using Kramers Kronig
   OMEGAMAX=  -1.0    maximum frequency
   DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate
   RTIME   =    0.100 relaxation time in fs

 Orbital magnetization related:
   ORBITALMAG=     F  switch on orbital magnetization
   LCHIMAG   =     F  perturbation theory with respect to B field
   DQ        =  0.001000  dq finite difference perturbation B field



--------------------------------------------------------------------------------------------------------

Output text.

<comment class="example.output" id="incar">
        <module cmlx:templateRef="incar">
            <scalar dataType="xsd:integer" dictRef="v:ispin">2</scalar>
            <scalar dataType="xsd:integer" dictRef="v:energyCutoff" units="nonsi:electronvolt">500</scalar>
            <scalar dataType="xsd:double" dictRef="v:ediff">0.1</scalar>
            <scalar dataType="xsd:double" dictRef="v:ediffg">0.1</scalar>
            <scalar dataType="xsd:integer" dictRef="v:ibrion">44</scalar>
            <scalar dataType="xsd:double" dictRef="v:potim">0.0500</scalar>
            <scalar dataType="xsd:double" dictRef="v:nelect">310.0000</scalar>
            <scalar dataType="xsd:double" dictRef="v:nupdown">-1.0000</scalar>
            <scalar dataType="xsd:integer" dictRef="v:ismear">0</scalar>
            <scalar dataType="xsd:double" dictRef="v:sigma">0.05</scalar>
            <scalar dataType="xsd:string" dictRef="v:ldipol">T</scalar>
            <scalar dataType="xsd:integer" dictRef="v:idipol">3</scalar>
            <scalar dictRef="v:ldau">true</scalar>
            <scalar dataType="xsd:integer" dictRef="v:ldautype">2</scalar>
            <scalar dataType="xsd:string" dictRef="v:gga">PE</scalar>
            <scalar dataType="xsd:boolean" dictRef="v:lhfcalc">false</scalar>
            <array dataType="xsd:integer" dictRef="cc:atomcount" size="4">12 24 3 10</array>
        </module>
    </comment>

Template definition.

<templateList>  <xi:include href="incar/dimension.xml" />  <xi:include href="incar/startparameters.xml" />  <xi:include href="incar/electronic.relaxation.xml" />  <xi:include href="incar/ionic.relaxation.xml" />  <xi:include href="incar/exchange.correlation.xml" />  <xi:include href="incar/atom.info.xml" />  <xi:include href="incar/dipole.xml" />  <xi:include href="incar/vcw.xml" />  <xi:include href="incar/dos.xml" />
    </templateList>
<templateList>  <template id="temperature" pattern="\s*TEIN.*" endPattern=".*" endPattern2="~">    <record id="temperature">\s*TEIN\s*={F,cc:temp}initial\stemperature.*</record>    <transform process="addUnits" xpath=".//cml:scalar[@dictRef='cc:temp']" value="si:k" />
        </template>  <template id="potim" pattern="\s*POTIM.*" endPattern=".*" endPattern2="~">    <record id="potim">\s*POTIM\s*={F,v:potim}.*</record>
        </template>  <template id="ldau" pattern="\s*LDA.*is\sselected,\stype\sis\sset.*" endPattern2="~">    <record id="ldau">\s*LDA.*is\sselected,\stype\sis\sset\sto\sLDAUTYPE\s={I,v:ldautype}.*</record>    <transform process="addChild" xpath="." elementName="cml:scalar" position="0" dictRef="v:ldau" value="true" />
        </template>
    </templateList>
<transform process="move" xpath=".//cml:scalar" to="." />
<transform process="move" xpath=".//cml:array" to="." />
<transform process="delete" xpath=".//cml:module" />